Age Estimation with Third M olars using Orthopantomograph (OPG): An Indian Scenario

L.S. Makesh Raj*, J. Jude**, Job Jacob Anison***, N. Srikant****, P. Sai Krishna*****, K.A. Shankar*

*Reader, **Senior Lecturer ,*****Professor, Department of Oral Pathology, ***Reader, Department of Orthodontics, Tagore Dental College and Hospital, Chennai. ***Professor, Department of Oral Pathology, Manipal College of Dental Sciences, Mangalore

Abstract

Estimating theage of an individual is important to differentiatebetween adolescenceand adulthood, because criminal laws are different for them. From dentist point of view, third molar is the only teeth which can differentiate these two age groups. Among the numerous methods of age estimation using third molars, assessment of mineralization and eruption status is the most commonly used method. Aim: To compare three radiographic methods of age estimation using the developmental stages of third molar. M aterial and M ethods: 204orthopantomographs wereretrieved of known ageand gender. Evaluation of the developmental stages of third molar was doneby threedifferent methods (Olzeet al, Gleiser and Hunt and Demirjian et al). Statistical A nalysis: Predictive equations were derived using linear regression analysis. The thus obtained R square values werethen compared to assess the best predictive equation. Results: Estimation of ageshowed better association with respect to mandibular molars than maxillary molars. Gleiser and Hunt method was more accuratethan Olzeet al and Demirjian et al techniques. Conclusion: Thebetter accuracy of Gleiser and Hunt method could be attributed to the greater subdivision ($n=10$) of developmental stages as compared to Olze $(n=4)$ and Demirjian ($n=8$).

Keywords: Age Estimation; Third M olar; Mineralization; Eruption.

Introduction

The accurate age estimation of deceased may be vital for their identification. Physicians, anthropologists and dentists have devised techniques and parameters to help estimatetheage using various variables which complement the absolute age. Chronological age can beequated to morphological, skeletal, sexual, psychological or dental age[1-3]. Different parameters are used to estimate age and these may either be separately used or used in combination with different degrees of accuracy.

Age estimation by assessing the dental development is considered moreaccurateas they are less affected by malnutrition and hormonal factors as compared to prediction by skeletal parameters[13]. Histology of tooth, stage of tooth eruption and

[^0]tooth mineralization arecommonly used to determine the age. Assessment of eruption is quick and noninvasive, but this method has disadvantage of wide variation in range for eruption of primary and permanent teeth.

A nother widely used method for age estimation using teeth is by its stage of mineral ization. Based on the mineralization, calcifying tooth is divided into different stages using dental radiographs. Various methods havebeen developed with different stages ranging from 3 to $10[4,5]$. Fewer thestages, lesser will be inter-examiner variability. But accuracy of age estimation will increase with the presence of more stages.

Third molars, being the only tooth which mineralizeand erupt between 16to 22 years, may be a significant parameter in identifying theindividual of adolescenceto young adult [6,7]. As criminal laws aredifferent for juvenileand adult, it is imperativeto differentiate child and an adult especially, when documentation is not properly maintained [8].

Thepresent study aims at comparing theaccuracy of threeradiographic methods (Olzeet al, Gleiser and

Hunt and Demirjian et al) of age estimation using the developmental stages of third molar.

M aterials and Methods

Panoramic radiographs of 204 individuals of known age and gender wereevaluated in the present study. There were 115 females and 89 males in this study with ageranged from 11 to 45 years. Thecriteria for inclusion were the availability of orthopantomograph of adequate quality in their clinical records. Patients with any medical history that could affect the presence and development of permanent teeth are excluded from the study. At the time of radiographic examination, the chronological age of each person was calculated on the basis of the reported date of birth.

Thedevelopmental stage of each third molar of a radiograph was eval uated using threetechniques. In thefirst method, eruption stages wereevaluated using the classification of stages by Olze et al. Eruption stages were classified into 4 stages [9].

1. Stage A: Occlusal plane covered with alveolar bone.
2. StageB: A lveolar eruption; completeresorption of al veolar boneover occlusal plane.
3. StageC: Gingival emergence; penetration of gingiva by at least one dental cusp.
4. StageD: Completeemergence in occlusal plane. Impacted teeth and rotated were eliminated from
theanalysis. (Figure 1)
In the second method proposed by Gleiser and Hunt (modified by Kohler et al) the third molar development was subdivided into 10 developmental stages. All thethird molars werescored in accordance with theformation of crown and root. In the case of different developmental stage of themultipleroots of athird molar, theleast developed root was evaluated and scored [10]. (Figure2)

Third method used wasthemodified classification of Demirjian et al for third molars which subdivided thedevelopment into 8stages [11]. (Figure3)

Statistical Analysis and Results

Statistical analysis was performed using Simple Linear Regression using SPSS version 20. Regression equations were derived for each technique separately (Table 1). Overall, the age estimation using the developmental stages of the mandibular molars showed higher R squarevalues (0.542 to 0.571) than themaxillary molars (0.475 to .526). Individually in both maxillary and mandibular teeth, Olze's technique showed the highest R and R square values of . 571 in 38 and .542 in 18. Analysis of covariance (ANCOVA) showed that gender had no confounding effect on age in the stage of development (Table 2). The assessment of age by Gleiser and Hunt and Olze technique were comparable and markedly better than the Demirjian's technique.

Table 1: Linear regression analysis (r square) and formula for each tooth by three methods of age estimation

S.no	M ethod	Tooth	R	R square	Formula
1	Demirjian	18	. 709	. 502	7.752+1.726(variable of 18)
		28	. 689	. 475	7.124+1.848(variable of 28)
		38	. 742	. 551	$6.603+1.890$ (variable of 38)
		48	. 736	. 542	$6.483+1.914$ (variable of 48)
2	Gleiser and hunt	18	. 719	. 517	10.296+1.134(variable of 18)
		28	. 694	. 482	10.124+1.175(variable of 28)
		38	. 749	. 561	$9.524+1.227$ (variable of 38)
		48	. 743	. 552	$9.418+1.243$ (variable of 48)
3	Olze	18	. 725	. 526	10.478+2.871(variable of 18)
		28	. 710	. 504	10.153+3.044(variable of 28)
		38	. 756	. 571	10.217+2.873(variable of 38)
		48	. 743	. 553	$9.949+3.012$ (variable of 48)

Table 2: A nalysis of covariance (ancova) to evaluate the covariance of the gender over age for each tooth in each system

D ependent V ariable	Source	Type III Sum of Squares	M ean Square	F	Sig.	R square
Demirjian 18	Age	333.133	333.133	173.69	<0.001	$\begin{gathered} \text { a. R Squared }=.507 \\ \text { (Adjusted R Squared }=.501 \text {) } \end{gathered}$
	GEN	3.382	3.382	1.763	0.186	
Demirjian 28	Age	314.191	314.191	156.144	<0.001	a. R Squared $=.479$
	GEN	2.669	2.669	1.326	0.251	(Adjusted R Squared $=.473$)
Demirjian 38	Age	372.516	372.516	223.025	<0.001	a. R Squared $=.555$
	GEN	2.32	2.32	1.389	0.24	(Adjusted R Squared =.550)

Demirjian 48	Age	359.369	359.369	216.8	≤ 0.001	$\begin{gathered} \text { R Squared }=.544 \text { (Adjusted } \\ \text { R Squared }=.539) \end{gathered}$
	GEN	1.323	1.323	0.798	0.373	
Gleiser and hunt 18	Age	821.847	821.847	184.62	<0.001	a. R Squared $=.520$
	GEN	5.372	5.372	1.207	0.273	(A djusted R Squared $=.515$)
Gleiser and hunt 28	Age	803.462	803.462	160.771	<0.001	a. R Squared $=.484$
	GEN	4.362	4.362	0.873	0.351	((djusted R Squared $=.478$)
Gleiser and hunt 38	Age	918.142	918.142	232.184	≤ 0.001	a. R Squared $=.563$ (Adjusted R Squared $=.559$)
	GEN	4.129	4.129	1.044	0.308	
Gleiser and hunt 48	Age	886.74	886.74	226.216	<0.001	a. R Squared $=.553$ (Adjusted R Squared $=.548$)
	GEN	1.888	1.888	0.482	0.489	
OLZE 18	Age	132.428	132.428	186.678	<0.001	$\begin{gathered} \text { a. R Squared }=.528 \\ \text { (Adjusted R Squared }=.523 \text {) } \end{gathered}$
	GEN	0.649	0.649	0.915	0.34	
OLZE 28	Age	131.524	131.524	170.802	<0.001	a. R Squared $=.504$ (Adjusted R Squared $=.498$)
	GEN	0.06	0.06	0.077	0.781	
OLZE 38	Age	150.267	150.267	201.031	≤ 0.001	$\begin{gathered} \text { a. } \text { R Squared }=.576 \\ (\text { Adjusted } R \text { Squared }=.571 \text {) } \end{gathered}$
	GEN	1.449	1.449	1.938	0.166	
OLZE 48	Age	146.396	146.396	198.875	<0.001	a. R Squared $=.556$ (Adjusted R Squared $=.550$)
	GEN	0.888	0.888	1.207	0.274	

Stage A: Occlusal plane covered with alveolar bone

Stage B: Alveolar eruption; complete resorption of alveolar bone over occlusal plane

Stage C: Gingival emergence; penetration of gingiva by atleast one dental cusp

Stage D: Complete emergence in occlusal plane

Fig. 1: Schematic representation of stages in olze method

Fig. 2: Schematic representation of stages in gleiser and hunt method

Stage D: Crown formation is complete to the dentino-Enamel junction. The pulp has a trapezoidal form.

Stage E: Formation of inter-radicular bifurcation has begun. Root length is less than the crown length.

Stage F: Root length is atleast as great as crown length. Roots have funnel shaped endings.

Stage G: Root walls are parallel, but apices remain open.

Fig. 3: Schematic representation of stages in demirjian method

Discussion

Eruption of the second molar marks the ageof an individual around 14 years. By 15 years of age, the apices of the majority of the permanent teeth have closed, with only thethird permanent molars remain as immature teeth. Ageestimation using sequence of tooth eruption is impossiblefor an individual more than 18 years. The third molar shows considerable variation in its development and is the tooth most commonly developmentally absent. Prevalencedata for absence of the third permanent molar varies from 7-32\% in the population.

Thethird permanent molar has been shown to be morevariable than theother permanent teeth, and is not included in the originally proposed method by Demirjian. Therearesignificant morphological and anatomic differences between the maxillary and mandibular third molars namely thenumber of roots, the angulation etc. With caution, all available third permanent molars should be used in age determination.

Stage H: Apical ends of the roots are completely closed and the periodontal membrane has a uniform width around the root.

A ssessment of tooth eruption is quick and noninvasivemethod which can bedetermined by clinical examination or radiographic evaluation. A wide range of eruption age in of teeth affected by factors such as the space available, ankylosis and early or delayed extraction of primary teeth alter thenormal eruption of thepermanent successorsetc are themajor disadvantages [12,13].

A ssessment of the level of cal cification of tooth on dental radiographs can beused to predict theage of the individual. Initially, extra-oral lateral oblique radiographs or cephalographs and intra-oral radiographs were required to view the developing permanent teeth. OPG allow the visualization of all the permanent teeth at one time, with reduced exposureto radiation.

Various methods have been employed which divide the tooth development into as many as 22 stages (Schour \& M assler) to as less as 3 stages (Garn et al.)[4,5]. Advantage of fewer stages is better reliability of inter-examiner agreement, but less precision of ageestimation. In contrast, having more
stages improves theaccuracy of ageestimation, but results in poor repeatability.

Whilst the majority of studies have used the Demirjian technique and there is still no consensus as to which isthe best approach. Thesystem devised by Demirjian, Goldstein and Tanner (1973) and later modified (Demirjian \& Goldstein 1976) assessed the 7 left permanent mandibular teeth discernible, dividing each tooth into eight developmental stages[14,15]. No stage was allocated for crypt formation. In addition, third molars wereexcluded as they were considered to show great variation. The Demirjian technique is easy to use and reproducible, but thelimited number of stages particularly of root development, may affect the accuracy of age estimation.

In our study, themandibular teeth showed better agreement with the stages than the maxillary teeth. This could beattributed to the pattern of eruption of thethird molars [16]. Maxillary molarsaremorelikely to be distoangularly impacted [17]. As themaxillary arch flares outward during growth there may be higher incidence of buccal tilt of the maxillary third molars[18]. This buccally inclined third molar might lead to improper assessment of theroot developmental stageas theroot may look smaller in two dimensional radiograph. This might lead to the higher errors in assessment of the maxillary tooth developmental stages and thereby lesser correlation. Mandibular teeth on theother hand aremorelikely to beimpacted mesioangularly and less of buccal or lingual tooth rotations owing to the buccal and lingual buttress leading to a better scoring.

In thepresent study, when evaluating theinfluence of sex on thedevel opment of third molar teeth there was no significant difference in the calcifications stageor eruption of third molar teeth between male and female subjects. Influence of gender on the development of the third molar has conflicting results in theliterature[8,19]. This may be attributed to ethnic differences in the chronology of third molar mineralization [8].

Conclusion

Thetechniqueby gleiser and Hunt has categorized the development to ten stages. This makes it more reliable in predicting the age. But has drawbacks of being more subjective and higher variability. Olze techniqueon the other hand is morereproduciblebut has drawback of inability to assess in an impacted teeth. Overall, assessment by all threetechniques may give a more reliable age range of prediction. In the
present study, gender has no influencein calcification stages or eruption of third molar teeth.

References

1. Rai B, Kaur J, Anand SC. Mandibular third molar development staging to chronologic age and sex in north Indian children and young adults. J Forensic Odontostomatol. 2009; 27(2): 45-49.
2. Kasper KA, Austin D, kvanli AH, Rios TR, Senn DR. Reliability of Third Molar Development for Age Estimation in a Texas Hispanic Population: A Comparison Study. J forensic sci. 2009; 54: 651-7.
3. Thevissen PW et al. Human dental age estimation using third molar developmental stages:A ccuracy of age predictions not using country specific information. Forensic Science International. 2010; 201: 106-11.
4. Garn SM, Lewis AB and Polacheck DL. Variability of tooth formation. Journal of Dental Research. 1959; 38: 135-147.
5. Schour I and Massler M. The development of the human dentition. Journal of the American Dental A ssociation. 1941; 28: 1153-1160.
6. Ajmal M, Assiri KI, Al;Ameer KY, Assiri AM, Luqman M. Age estimation using third molar teeth: A study on southern Saudi population. Journal of F orensic dental sciences. 2012; 4: 63-65.
7. Makkad RS et al. Reliability of panoramic radiography in chronological age estimation. Journal of forensic sciences. 2013; 5: 129-33.
8. Hassan NA and Abo Hamila NAA. Orthopantomography and age determination using third molar mineralization in a sample of Egyptians. M ansoura J. Forensic M ed. Clin. Toxicol. 2007; 15: 45-59.
9. Ozle A et al. Dental age estimation based on third molar eruption in first nations people of Canada. J F orensic O dontostomatol. 2010; 28: 32-38.
10. Gunst K, Mesotten K, Carbonez A and Willems G. Third molar root development in relation to chronological age: a large sample sized retrospective study. F orensic Science International. 2003; 136: 52-57.
11. Mincer HH, Harris EF and Berryman HE. The A.B.F.O. Study of third molar development and its use as an estimator of chronological age. Journal of forensic sciences. 1993; 38: 379-90.
12. Ardakani F, Basharsoust N and Sheikhha M. The accuracy of dental panoramic radiography as an indicator of chronological age in Iranian individual. J F orensic 0 dontostomal. 2007; 25: 30-5.
13. Bakary AA, Hammad SM, Ibrahim FM. Comparison between two methods of Dental age estimation among Egyptian children. Indian Journal of Forensic O dontology. 2009; 2: 83-9.
14. Demirjian A, Goldstein H and Tanner JM. A new system of dental age assessment. H uman Biology. 1973; 45: 221-227.
15. Demirjian A and Goldstein H. New systems for dental maturity based on the seven and four teeth. A nnals of Human Biology. 1976; 3: 411-21.
16. Lim AAT, Wong CW and Allen JC. Maxillary Third Molar: Patterns of Impaction and Their Relation to Oroantral Perforation. J Oral M axillofac Surg. 2012; 70: 1035-39.
17. Hassan AH. Pattern of third molar impaction in a

Saudi population. Clin Cosmet Investig Dent. 2010; 2: 109-113.
18. Mollaoglu N, Çetiner S , GüngörK. Patterns of third molar impaction in a group of volunteers in Turkey. Clin Oral Invest. 2002; 6: 109-113.
19. De A raújo AMM, Pontual MLDA, de França KP, Beltrão RV, Pontual ADA. Association between mineralization of third molars and chronological age in a Brazilian sample. Rev. odonto ciênc. 2010; 25(4): 391-94.

Instructions to Authors

Submission to the journal must comply with the Guidelines for Authors. Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors please visit:
http:/ / www.rfppl.co.in

Technical problems or general questions on publishing with IJFO are supported by Red
Flower Publication Pvt. Ltd's Author Support team (http:/ / www.rfppl.co.in)

Alternatively, please contact the Journal's Editorial Office for further assistance.

Publication-in-Charge
Indian Journal of Forensic Odontology
Red Flower Publication Pvt. Ltd.
48/ 41-42, DSIDC, Pocket-II
Mayur Vihar Phasel
Delhi - 110091
India
Phone: 91-11-22754205, 45796900, Fax: 91-11-22754205
E-mail: redflowerppl@gmail.com, redflowerppl@vsnl.net
Website: www.rfppl.co.in

[^0]: Corresponding Author: L.S. Makesh Raj, Reader, Department of Oral Pathology and Microbiology, Tagore Dental College and Hospital, Rathinamangalam, Melakkottaiyur Post, Near Vandalur, Chennai- 600127, Tamil Nadu.

 E-mail: makeshraj1981@gmail.com

